Activated ERBB2/HER2 licenses sensitivity to apoptosis upon endoplasmic reticulum stress through a PERK-dependent pathway.

نویسندگان

  • Rosa Martín-Pérez
  • Carmen Palacios
  • Rosario Yerbes
  • Ana Cano-González
  • Daniel Iglesias-Serret
  • Joan Gil
  • Mauricio J Reginato
  • Abelardo López-Rivas
چکیده

HER2/Neu/ERBB2 is a receptor tyrosine kinase overexpressed in approximately 20% of human breast tumors. Truncated or mutant isoforms that show increased oncogenicity compared with the wild-type receptor are found in many breast tumors. Here, we report that constitutively active ERBB2 sensitizes human breast epithelial cells to agents that induce endoplasmic reticulum stress, altering the unfolded protein response (UPR) of these cells. Deregulation of the ERK, AKT, and mTOR activities elicited by mutant ERBB2 was involved in mediating this differential UPR response, elevating the response to endoplasmic reticulum stress, and apoptotic cell death. Mechanistic investigations revealed that the increased sensitivity of mutant ERBB2-expressing cells to endoplasmic reticulum stress relied upon a UPR effector signaling involving the PERK-ATF4-CHOP pathway, upregulation of the proapoptotic cell surface receptor TRAIL-R2, and activation of proapoptotic caspase-8. Collectively, our results offer a rationale for the therapeutic exploration of treatments inducing endoplasmic reticulum stress against mutant ERBB2-expressing breast tumor cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of ER Stress Response in Photodynamic Therapy: ROS Generated in Different Subcellular Compartments Trigger Diverse Cell Death Pathways

We have analyzed the molecular mechanisms of photoinduced cell death using porphyrins with similar structure differing only in the position of the ethylene glycol (EG) chain on the phenyl ring. Meta- and para-positioned EG chains targeted porphyrins to different subcellular compartments. After photoactivation, both types of derivatives induced death of tumor cells via reactive oxygen species (R...

متن کامل

Fluoxetine synergizes with temozolomide to induce the CHOP-dependent endoplasmic reticulum stress-related apoptosis pathway in glioma cells

Although temozolomide (TMZ) is the most effective chemotherapy agent for glioma, chemotherapy resistance has limited its clinical use. Fluoxetine (FLT), which is widely used in cancer-related depression, has exhibited potent anticancer properties in different cancer cell types. The aim of this study was i) to evaluate the antitumor mechanism of FLT, and ii) to further evaluate the effects of a ...

متن کامل

Protein kinase RNA- like endoplasmic reticulum kinase (PERK) signaling pathway plays a major role in reactive oxygen species (ROS)- mediated endoplasmic reticulum stress- induced apoptosis in diabetic cardiomyopathy

BACKGROUND Endoplasmic reticulum (ER) stress is considered one of the mechanisms contributing to reactive oxygen species (ROS)-mediated cell apoptosis. In diabetic cardiomyopathy (DCM), cell apoptosis is generally accepted as the etiological factor and closely related to cardiac ROS generation. ER stress is proposed the link between ROS and cell apoptosis; however, the signaling pathways and th...

متن کامل

Avarol Induces Apoptosis in Pancreatic Ductal Adenocarcinoma Cells by Activating PERK–eIF2α–CHOP Signaling

Avarol is a sesquiterpenoid hydroquinone with potent cytotoxicity. Although resolving endoplasmic reticulum (ER) stress is essential for intracellular homeostasis, erratic or excessive ER stress can lead to apoptosis. Here, we reported that avarol selectively induces cell death in pancreatic ductal adenocarcinomas (PDAC), which are difficult to treat owing to the availability of few chemotherap...

متن کامل

Asymmetric Dimethylarginine Induced Apoptosis and Dysfunction of Endothelial Progenitor Cells: Role of Endoplasmic Reticulum Stress Pathway

Asymmetric dimethylarginine (ADMA), an inhibitor of nitric oxide synthase, is a novel risk factor of cardiovascular disease. Endothelial progenitor cells (EPCs) bear typical endothelial characteristics and are thought to contribute to neovascularization by providing new endothelial cells (ECs) after arterial injury. Many studies have shown that ADMA can induce EPC apoptosis and dysfunction, but...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Cancer research

دوره 74 6  شماره 

صفحات  -

تاریخ انتشار 2014